ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
J. Woodcock, Per F. Peterson, D. R. Spencer
Nuclear Technology | Volume 134 | Number 1 | April 2001 | Pages 37-48
Technical Paper | NURETH-9 | doi.org/10.13182/NT01-A3184
Articles are hosted by Taylor and Francis Online.
The Westinghouse AP600 containment structure is a steel containment vessel surrounded by a thick concrete shield building. A passive containment cooling system applies gravity-drained water to the outer surface of the steel containment shell to remove heat by evaporation and convection. Mass transfer is the dominant means of containment heat removal on both inner and outer steel shell surfaces. On the inside, condensation on the containment shell dominates heat removal and is influenced by the distribution of steam and noncondensible gases. The AP600 design basis analysis for containment does not rely on fan coolers or sprays to homogenize the internal atmosphere. During the post-blowdown phase of a loss-of-coolant accident (LOCA) transient, mixing due to break momentum may be neglected by assuming momentum to be dissipated within the break compartment, conservatively minimizing source momentum-induced mixing. One or more buoyant plumes will rise from openings in the operating deck, and a wall boundary layer induced by heat and mass transfer to the containment shell will flow downward. Both the plume and wall layer entrain bulk mixture, acting to circulate the bulk mixture. The fluid dynamics leads to a time-averaged vertical gradient of steam concentration. Simple integral entrainment relations have been examined to assess the order of magnitude of vertical steam concentration differences that may occur in the AP600 containment during the long-term LOCA transient.