ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Jin Won Kim, Dae Soo Lee, Jong Hyun Kim
Nuclear Technology | Volume 134 | Number 1 | April 2001 | Pages 15-22
Technical Paper | NURETH-9 | doi.org/10.13182/NT01-A3182
Articles are hosted by Taylor and Francis Online.
In the intake structure of a nuclear power plant, undesirable pump operating characteristics such as vortices and nonuniform pump-approach flow around the pump bells take place frequently due to poorly arranged intake geometry. Therefore, prior to the construction or renovation of intake structure or internal auxiliary facilities, a hydraulic modeling test should be performed to predict the undesirable hydraulic phenomena. In this study, a three-dimensional turbulence model was applied for a numerical modeling test, and a 1:10 scale, geometrically undistorted physical model was employed to investigate the hydraulic behavior and simulate pump operating conditions in the intake structure of Kori Nuclear Units 3 and 4 in Korea. The results from these numerical and physical model tests were compared, and an antivortex device was also proposed to ensure a stable suction condition of the pumps.