ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
B.-G. Brodda, D. Heinen
Nuclear Technology | Volume 34 | Number 3 | August 1977 | Pages 420-427
Technical Paper | Chemical Processing | doi.org/10.13182/NT77-A31807
Articles are hosted by Taylor and Francis Online.
The radiolytic load of the 30 vol% tributylphosphate-n-paraffin extractant to be used in the Jülich Pilot Plant for Thorium Element Reprocessing facility for reprocessing thorium high-temperature reactor (THTR) fuel elements with high burn-up values (85 000 MWd/MT of heavy-metal atoms) was calculated. At a radioactivity level of ∼2000 Ci/ℓ, the effective beta-particle power density of the feed solution ranges up to 15 W · ℓ−1. Most of the energy absorbed by the extractant is due to beta radiation (99%). About 1% originates from gamma radiation; contributions from alpha-particle emitters are negligible. The calculations consider the geometric parameters of the applied mixer-settler and the operational parameters of the flowsheet. The highest exposure expected will be ∼0.2 Wh · ℓ−1 · pass−1 when reprocessing fuel with 85 000 MWd/MT burnup after a cooling time of 100 days. For an easier comparison of the calculated value with other reported values, a coefficient is introduced describing the specific exposure of the extractant in terms of energy absorption per hour of passing through the contactor at a power density of 1 W· ℓ−1 in the feed solution. This coefficient is independent of such individual flowsheet conditions as heavy-metal concentration or power density in the feed solution. Comparison of calculated data with other reported data for THOREX and PUREX reprocessing runs exhibits only about a four-fold specific load of the extractant in case of reprocessing high-burned-up THTR fuel with respect to low-enriched low-burned-up light water reactor fuel. This underproportional increase is due to the specific fission-product spectrum of the investigated THTR fuel arising in the course of its reactor residence time.