ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Ned E. Bibler
Nuclear Technology | Volume 34 | Number 3 | August 1977 | Pages 412-415
Technical Paper | Chemical Processing | doi.org/10.13182/NT77-A31805
Articles are hosted by Taylor and Francis Online.
The radiolytic oxidation of Fe(II) and the destruction of sulfamic acid (SA) in feed solutions for solvent extraction purification of 237Np and 238Pu from spent nuclear fuels have been investigated. Cobalt-60 gamma radiolysis of simulated solutions established that 100-eV yields for depletion of Fe(II) and SA are 13 and 5.6, respectively. Also, the normally occurring components of process solutions do not significantly affect these yields. An actual process solution was studied in which radiolysis was almost entirely from gamma-ray and beta-particle decay of 235U fission products along with a small fraction from alpha-particle decay of transuranium isotopes. In this solution, G(Fe3+) is 12, which is in good agreement with results with simulated solutions. Interpretation of the results suggests that Fe(II) not only reduces Np(V) and Pu(IV) but also protects the reduced states from reoxidation by radiolytically formed intermediates; when Fe(II) is depleted, the reduced states are immediately oxidized.