ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
R. R. Fullwood, R. C. Erdmann, E. T. Rumble, G. S. Lellouche
Nuclear Technology | Volume 34 | Number 3 | August 1977 | Pages 341-346
Technical Paper | Reactor | doi.org/10.13182/NT77-A31798
Articles are hosted by Taylor and Francis Online.
Reliability predictions for systems exhibiting few, if any, failures require the use of all available information. The Bayes equation incorporates prior engineering information with test data to provide statistically improved posterior estimates. Classical results agree with those obtained from the Bayes equation by using no prior information. For the case of failure-on-demand, this is equivalent to assuming a 50% mean failure probability for the prior information—hardly an appropriate estimate for a reliable system such as a reactor scram system. The method of Bayes conjugates applied to the cases of aging failure and failure-on-demand yields formulas for calculating mean, standard deviation, and confidence values. Various methods for incorporating prior information are possible. For example, calculating scram failure probabilities by incorporating prior information obtained from fault tree analysis of a scram system with historical test data indicates a mean scram failure probability of ∼8 × 10−6 per demand.