ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
E. L. Simmons, Donald J. Dudziak, S. A. W. Gerstl
Nuclear Technology | Volume 34 | Number 3 | August 1977 | Pages 317-340
Technical Paper | Reactor | doi.org/10.13182/NT77-A31797
Articles are hosted by Taylor and Francis Online.
The final design of a nuclear reactor and any component thereof evolves through an iterative process that necessitates the evaluation of many alternative concepts. In particular, conceptual and preliminary reactor systems studies require many quick survey calculations to determine changes of certain important design parameters in response to changes of layout, material compositions, and other design features. Effective methods to perform such design sensitivity analyses are described and applied to the nuclear design of a fusion reactor. Generalized perturbation theory is used to calculate sensitivities of integral nuclear design parameters to certain design changes. The accuracy of this method is evaluated for specific cases where large ranges of design perturbations are considered. Specifically, the effects on tritium breeding, energy deposition, atom displacements and transmutations in the Reference Theta-Pinch Reactor design due to variations in the beryllium thickness, choices of molybdenum, vanadium, or niobium structural material, BeO versus beryllium neutron multiplier, graphite region thickness, and 6Li enrichment are investigated.