ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
E. L. Simmons, Donald J. Dudziak, S. A. W. Gerstl
Nuclear Technology | Volume 34 | Number 3 | August 1977 | Pages 317-340
Technical Paper | Reactor | doi.org/10.13182/NT77-A31797
Articles are hosted by Taylor and Francis Online.
The final design of a nuclear reactor and any component thereof evolves through an iterative process that necessitates the evaluation of many alternative concepts. In particular, conceptual and preliminary reactor systems studies require many quick survey calculations to determine changes of certain important design parameters in response to changes of layout, material compositions, and other design features. Effective methods to perform such design sensitivity analyses are described and applied to the nuclear design of a fusion reactor. Generalized perturbation theory is used to calculate sensitivities of integral nuclear design parameters to certain design changes. The accuracy of this method is evaluated for specific cases where large ranges of design perturbations are considered. Specifically, the effects on tritium breeding, energy deposition, atom displacements and transmutations in the Reference Theta-Pinch Reactor design due to variations in the beryllium thickness, choices of molybdenum, vanadium, or niobium structural material, BeO versus beryllium neutron multiplier, graphite region thickness, and 6Li enrichment are investigated.