ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Ronald D. Gasser, Mujid S. Kazimi
Nuclear Technology | Volume 33 | Number 3 | May 1977 | Pages 248-259
Technical Paper | Reactor | doi.org/10.13182/NT77-A31786
Articles are hosted by Taylor and Francis Online.
A two-dimensional transient freezing model is developed to study the dynamics of solidification of a fluid flowing in a cylindrical channel, the walls of which are cooled below the freezing temperature of the fluid. The model is applied to the case of molten fuel flowing downward through the coolant channels in the lower shielding structure of current liquid-metal fast breeder reactor designs subsequent to a hypothetical core meltdown accident. The results indicate that under postaccident conditions, a high potential exists for rapid relocation of significant quantities of core debris across the shield structure.