ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Ronald D. Gasser, Mujid S. Kazimi
Nuclear Technology | Volume 33 | Number 3 | May 1977 | Pages 248-259
Technical Paper | Reactor | doi.org/10.13182/NT77-A31786
Articles are hosted by Taylor and Francis Online.
A two-dimensional transient freezing model is developed to study the dynamics of solidification of a fluid flowing in a cylindrical channel, the walls of which are cooled below the freezing temperature of the fluid. The model is applied to the case of molten fuel flowing downward through the coolant channels in the lower shielding structure of current liquid-metal fast breeder reactor designs subsequent to a hypothetical core meltdown accident. The results indicate that under postaccident conditions, a high potential exists for rapid relocation of significant quantities of core debris across the shield structure.