ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Kenji Takeshita, Yoshio Nakano
Nuclear Technology | Volume 133 | Number 3 | March 2001 | Pages 338-345
Technical Paper | Reprocessing | doi.org/10.13182/NT01-A3178
Articles are hosted by Taylor and Francis Online.
An adsorption process of iodine using Ag0-loaded adsorbents was studied for the removal of radioactive iodine in the process off-gas from a spent nuclear fuel reprocessing plant. A mathematical model to predict a breakthrough curve of I2 on the adsorbent bed was proposed. This model consists of the mass balance equation of I2 in the adsorbent bed, the mass transfer equation of I2 through the boundary layer surrounding the adsorbent particle, the intraparticle diffusion equation of I2, and the kinetic equation for the gas-solid reaction between I2 and loaded Ag0. Two unknown parameters in the model, the intraparticle diffusivity De and the apparent rate constant for the gas-solid reaction kr were determined simultaneously from the adsorption data measured by a thermogravimetric analyzer. The breakthrough curves predicted by the model using these parameters were in good agreement with the experimental ones. The rate-controlling step was evaluated by the effectiveness factor calculated from the kr value and the concentration gradient of I2 in the adsorbent particles, which was estimated by the model. From these results, the adsorbent structure required to improve the process performance is discussed. The proposed model is available as a calculation tool to support the design of the adsorption process.