ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Bo Kyun Seo, Jong Kyung Kim, Chang Ho Shin, Tae Je Kwon
Nuclear Technology | Volume 133 | Number 3 | March 2001 | Pages 325-337
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3177
Articles are hosted by Taylor and Francis Online.
The feasibility of nuclear power plant lifetime extension was examined by reducing the fast neutron fluence at the reactor pressure vessel (RPV) and relieving irradiation embrittlement of materials, and thus ensuring enough structural integrity beyond the design lifetime. Two fluence reduction options, peripheral assembly replacement and additional shield installation in the outer core structures, were applied to the Kori Unit-1 reactor, and the fluence reduction effect was carefully analyzed. For an accurate estimate of the neutron fluence at the RPV and a reasonable description of the modified peripheral assemblies, a full-scope explicit modeling of a Monte Carlo simulation was employed in all calculations throughout this study. The Kori Unit-1 cycle-16 core was modeled on a three-dimensional representation by using the MCNP4B code, and the fluence distribution was estimated at the inner wall beltline around the circumferential weld of the RPV. On the basis of fracture toughness requirements of the RPV, the two modified cases were predicted to have an additional life of 7 to 10 effective full-power years. Throughout the core nuclear characteristics analyses, it was confirmed that the critical peaking factors for safe reactor operation were satisfied with the design limits.