ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
2024: The Year in Nuclear—April through June
Another calendar year has passed. Before heading too far into 2025, let’s look back at what happened in 2024 in the nuclear community. In today's post, compiled from Nuclear News and Nuclear Newswire are what we feel are the top nuclear news stories from April through May 2024.
Stay tuned for the top stories from the rest of the past year.
Bo Kyun Seo, Jong Kyung Kim, Chang Ho Shin, Tae Je Kwon
Nuclear Technology | Volume 133 | Number 3 | March 2001 | Pages 325-337
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3177
Articles are hosted by Taylor and Francis Online.
The feasibility of nuclear power plant lifetime extension was examined by reducing the fast neutron fluence at the reactor pressure vessel (RPV) and relieving irradiation embrittlement of materials, and thus ensuring enough structural integrity beyond the design lifetime. Two fluence reduction options, peripheral assembly replacement and additional shield installation in the outer core structures, were applied to the Kori Unit-1 reactor, and the fluence reduction effect was carefully analyzed. For an accurate estimate of the neutron fluence at the RPV and a reasonable description of the modified peripheral assemblies, a full-scope explicit modeling of a Monte Carlo simulation was employed in all calculations throughout this study. The Kori Unit-1 cycle-16 core was modeled on a three-dimensional representation by using the MCNP4B code, and the fluence distribution was estimated at the inner wall beltline around the circumferential weld of the RPV. On the basis of fracture toughness requirements of the RPV, the two modified cases were predicted to have an additional life of 7 to 10 effective full-power years. Throughout the core nuclear characteristics analyses, it was confirmed that the critical peaking factors for safe reactor operation were satisfied with the design limits.