ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
D. R. Duncan, M. M. Paxton
Nuclear Technology | Volume 33 | Number 1 | April 1977 | Pages 112-119
Technical Note | Material | doi.org/10.13182/NT77-A31769
Articles are hosted by Taylor and Francis Online.
The effects of compositional variations on the rupture life of 20% cold-worked Type 316 stainless steel were investigated at 19-ksi (131-MPa) uniaxial tensile stress and at 1400°F (1033 K). Forty-nine different alloys were studied, with compositional variations from nominal in carbon, nitrogen, phosphorus, sulfur, boron, manganese, copper, silicon, molybdenum, cobalt, chromium, and nickel. This alloy and cold-work level represents the duct and fuel cladding material choice for the first four core loadings of the Fast Flux Test Facility, a key element in the Liquid-Metal Fast Breeder Reactor Program. Tensile properties of four of the alloys were studied at temperatures from room temperature to 1600°F (1144 K). Boron, nitrogen, and molybdenum plus silicon additions significantly increased rupture life, while chromium and carbon additions decreased rupture life. Molybdenum plus silicon additions increased yield and ultimate strength and ductility at 1200°F (922 K) and below.