ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Klaus W. Klein
Nuclear Technology | Volume 33 | Number 1 | April 1977 | Pages 60-67
Technical Paper | Fuel | doi.org/10.13182/NT77-A31763
Articles are hosted by Taylor and Francis Online.
The fuel element concept of the gas-cooled fast breeder reactor (GCFR) is based on vented fuel pins to equalize pressure differences between the fission gas inside the fuel pin and the coolant. The fission products escaping from the fuel, mainly noble gases, are collected and swept separately from the primary coolant by a helium stream into a purification plant. Calculations were performed to estimate the activity release during normal operation, transient, and accident conditions for a 1000-MW(e) GCFR designed by Kraftwerk Union. The results show that during normal operation, only 0.8% of the total equilibrium noble gas activity in the core will be released into the purification plant. The most severe case for the activity release is a depressurization accident followed by the release of the whole fission gas inventory in the interstitial gas volume of the fuel pins of ∼5.3 × 107 Ci (2.0 EBq). To adsorb this amount of fission gases in the low-temperature charcoal beds of the purification plant, a temporary refrigeration load of ∼173 kW is necessary. Using a purification plant with a refrigeration capacity of ∼50 kW and an equivalent storage of liquid nitrogen for auxiliary purposes, no significant extrapolation from the designed high-temperature gas-cooled reactor purification plants is necessary.