ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Klaus W. Klein
Nuclear Technology | Volume 33 | Number 1 | April 1977 | Pages 60-67
Technical Paper | Fuel | doi.org/10.13182/NT77-A31763
Articles are hosted by Taylor and Francis Online.
The fuel element concept of the gas-cooled fast breeder reactor (GCFR) is based on vented fuel pins to equalize pressure differences between the fission gas inside the fuel pin and the coolant. The fission products escaping from the fuel, mainly noble gases, are collected and swept separately from the primary coolant by a helium stream into a purification plant. Calculations were performed to estimate the activity release during normal operation, transient, and accident conditions for a 1000-MW(e) GCFR designed by Kraftwerk Union. The results show that during normal operation, only 0.8% of the total equilibrium noble gas activity in the core will be released into the purification plant. The most severe case for the activity release is a depressurization accident followed by the release of the whole fission gas inventory in the interstitial gas volume of the fuel pins of ∼5.3 × 107 Ci (2.0 EBq). To adsorb this amount of fission gases in the low-temperature charcoal beds of the purification plant, a temporary refrigeration load of ∼173 kW is necessary. Using a purification plant with a refrigeration capacity of ∼50 kW and an equivalent storage of liquid nitrogen for auxiliary purposes, no significant extrapolation from the designed high-temperature gas-cooled reactor purification plants is necessary.