ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Felix C. Difilippo, Stephen E. Fisher
Nuclear Technology | Volume 133 | Number 3 | March 2001 | Pages 310-324
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT01-A3176
Articles are hosted by Taylor and Francis Online.
Important decisions related to the kind of reactors to be used for the disposition of the surplus weapons-grade plutonium are going to be based on calculations. Benchmarking computational methods in all aspects of the fuel cycle with measured data is then an obvious necessity. Analysis of public domain data reveals that the cycle-2 irradiation in the Quad Cities-1 boiling water reactor is the most recent U.S. destructive examination, involving the irradiation of five mixed-oxide (MOX) assemblies using 80 and 90% fissile Pu, quite close to weapons-grade Pu isotopic. Such measurements are rare, and they might be the only source of information to quantify differences in key neutronics parameters between high-fissile Pu systems and the well-characterized use of reactor-grade Pu. The pin neutronic performances for the UO2 and MOX fuels are compared with assembly-level calculation in which ~20% of the pins are MOX pins surrounded by UO2 pins. For MOX rods, HELIOS models the chains for the isotopes of uranium and plutonium reasonably well when compared with measured data at ~12 000 MWd/tonne. However, indications are that the amounts of heavier actinides are underpredicted. Measurements and calculations of the relative pin power distribution for the last few weeks of the irradiation and the burnup are fairly consistent. The critical effects of the contribution of the 0.296-eV resonance to the production of higher actinides and the destruction of 239Pu are discussed.