ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
J. A. Grundl, V. Spiegel, C. M. Eisenhauer, H. T. Heaton II, D. M. Gilliam, J. Bigelow
Nuclear Technology | Volume 32 | Number 3 | March 1977 | Pages 315-319
Technical Paper | Radioisotope | doi.org/10.13182/NT77-A31755
Articles are hosted by Taylor and Francis Online.
Spontaneous fission sources of 252Cf, lightly encapsulated and with neutron source strengths approaching 1010 n/s, have been developed especially for integral cross-section measurements and neutron reaction rate calibrations. An irradiation facility at the National Bureau of Standards makes use of these sources in two well-investigated geometries. A free-field neutron flux in the range of 107 n/(cm2 s) (105 n/mm2 · s) and fluences of up to 1013 n/cm2 (1011 n/mm2) are established at the facility based only on a distance measurement and the absolute source strength of the national standard Ra-Be photoneutron source. The error in the 252Cf source strength (±1.1%) dominates the total free-field flux uncertainty of ±1.4% (1σ). Neutron scattering effects in the source capsule and support structures and neutron return from concrete and earth boundaries have been calculated and investigated experimentally. In the worst case, they contribute ±0.7% to the total flux response uncertainty for all observed neutron reaction rates, including those with sensitivity to low-energy neutrons.