ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Dieter Sommer
Nuclear Technology | Volume 32 | Number 3 | March 1977 | Pages 257-275
Technical Paper | Reactor | doi.org/10.13182/NT77-A31750
Articles are hosted by Taylor and Francis Online.
The introduction of plutonium-charged fuel elements was investigated with regard to a change in the axial power density distribution. An attempt was made to gather information regarding the influence of coolant temperature change on the local power production. The state of the reactor during the investigations was supposed to correspond to realistic operating conditions. During stretch-out operation, as a result of the reduction of the mean coolant temperature and the reactor power, the fall in coolant outlet temperature is greater than the rise in inlet temperature. Hence, the greatest coolant density change occurs at the coolant outlet. In this manner, the relative power density distribution is displaced toward the upper core half. This displacement is particularly strong in highly loaded plutonium fuel elements. During full-load operation, the control rods must be fully withdrawn to prevent deficient burnup in the upper core half. Bearing this stipulation in mind, no operating restriction is to be expected during stretch-out operation due to the recycling of plutonium. In a special experiment, the influence of turbine load changes on the axial power density distribution in a noncontrolled reactor was investigated. A power reduction at the turbine causes a rise in the mean coolant temperature of the reactor. Owing to local coolant temperature differences, the power density was found to displace toward the upper core half in a noncontrolled reactor, this being more so the case for plutonium fuel elements. The increased power production in the upper half of the fuel element increases the effectivity of the control rods. The introduction of fuel elements with recycled plutonium does not lead to the expectation of restrictions to reactor operation in this connection. The investigations cited in this report and the good agreement between the theoretical predictions and the experiments permitted the recycling of the self-bred plutonium at KWO without restrictions on the operation of the reactor.