ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yue Guan, Fei Li, Mohammad Modarres
Nuclear Technology | Volume 133 | Number 3 | March 2001 | Pages 290-309
Technical Paper | Reactor Safety | doi.org/10.13182/NT01-A3175
Articles are hosted by Taylor and Francis Online.
A method of integrating traditional thermal-hydraulic (TH) analysis with probabilistic assessment (PA) (called the TH-PA method) has been developed. This method allows for an exhaustive search through a set of individually developed but subsequently linked logic models to screen and identify accident scenarios. The logic models consist of a probabilistic risk assessment (PRA) used for probabilistic screening purpose and an ensemble of integrated behavior logic diagrams (IBLDs). The PRA model represents the functional/logical relationships of the components and accident scenarios, the same way as is modeled in the conventional PRAs. The IBLDs hierarchically represent system interactions/dependencies due to TH phenomena and human actions. This hierarchy also shows causal factors and consequences of plant states, and identifies induced system failures. The TH-PA method relies on two types of scenario screening: probabilistic screening (PA screening) and TH screening. The PA screening eliminates scenarios with low frequencies (e.g., <10-10/reactor-yr). The traditional frequency-based screening method used in the PRAs has been adopted for PA screening. The TH screening eliminates scenarios that do not expect to result in core uncovery. For the TH screening, a simple accident trajectory approach has been devised. A trajectory represents the collapsed liquid volume fraction in the reactor primary system as a function of primary pressure. The trajectories are based on simple mass and energy conservation equations (if the TH-PA method is applied to a system where mechanical energy transfer is important, momentum conservation should also be considered). The roles of each plant system are then identified by indicating whether the system is a "source" or a "sink" for mass and energy at a given time during accident progression. Based on an input set that represents the plant system failures and the stage of the transient, the accident trajectory is developed. The accident trajectory allows for the evaluation of safety significance of scenarios. The trajectory also determines whether the core becomes uncovered, should the input conditions (i.e., conditions described by the input set) remain unchanged.