ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
L. T. Fan, David F. Aldis
Nuclear Technology | Volume 32 | Number 3 | March 1977 | Pages 222-238
Technical Paper | Reactor | doi.org/10.13182/NT77-A31747
Articles are hosted by Taylor and Francis Online.
The design of a cooling system for a power plant is approached as a problem in systems synthesis. The cooling system is optimized with respect to both the independent variables associated with each cooling unit and the arrangement of the cooling units in the system. A sample cooling system is optimally synthesized with two methods of systems synthesis—a structural parameter problem formulation with a direct search and a dynamic programming formulation. Other approaches are also considered. Two types of cooling units—a mechanical draft cooling tower and a cooling pond—are used in the example. The methods proposed for the development of the optimal design are sufficiently general so that any number, type, or combinations of types of cooling units could be included in the optimal systems synthesis.