ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Derek G. Boase, Tjalle T. Vandergraaf
Nuclear Technology | Volume 32 | Number 1 | January 1977 | Pages 60-71
Technical Paper | Materials in Waste Storage / Radioactive Waste | doi.org/10.13182/NT77-A31738
Articles are hosted by Taylor and Francis Online.
Concrete canisters for interim dry storage of spent, irradiated Canadian Deuterium Uranium (CANDU) fuel are being developed by Atomic Energy of Canada Limited. The canisters are designed to contain fuel safely for periods of 50 to 100 yr in carbon steel baskets sealed inside a steel- and lead-lined concrete shield. A demonstration program at the Whiteshell Nuclear Research Establishment is utilizing four instrumented canisters to establish the canister structural integrity when exposed to the thermal stresses generated by the decay heat of the stored fuel. A review of other potential materials problems identified three areas of concern: corrosion of the fuel basket and canister lining, fuel sheath oxidation, and UO2 oxidation. Preliminary analysis suggests that the first of these will be minimized by the migration of moisture to the outside of the canister under the influence of the temperature gradient, and the second is predicted to be insignificant for periods up to 100 yr. The third area was less well understood, and a detailed experimental study was therefore undertaken. Initial canister designs conceived the use of air-filled fuel baskets, with UO2 fuel temperatures initially in the 200 to 300°C range. Oxidation of the UO2 in defected fuel could cause contamination of the baskets and complicate subsequent fuel retrieval. The rates and mechanism of UO2 oxidation have been studied using powders, sintered pellets, and intentionally defected fuel elements. The oxidation in fuel elements proceeds by the formation of U3O8, swelling and splitting of the sheath and exposure of more fuel, and the release of finely powdered U3O8. Some data are given for the oxidation rates of irradiated fuel elements together with the approximate times required to oxidize a single fuel pin. In the present demonstration canisters, the possibility of oxidation of the fuel has been eliminated by storing it in helium-filled baskets.