ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. G. Moore, H. W. Godbee, A. H. Kibbey
Nuclear Technology | Volume 32 | Number 1 | January 1977 | Pages 39-52
Technical Paper | Materials in Waste Storage / Radioactive Waste | doi.org/10.13182/NT77-A31736
Articles are hosted by Taylor and Francis Online.
The rates at which strontium, cesium, plutonium, and curium are leached from hydrofracture grout (a modified cement) were measured. These studies utilized the test method proposed by the International Atomic Energy Agency or a modification that exposed smaller specimens with a higher surface-to-volume ratio to a larger volume of leachant. The fraction of an isotope leached varied with the square root of time if the leachant was replaced more frequently than once per day, but was inhibited or depressed if replacement was made less often. The amount of strontium or cesium leached from the grout varied directly with the degree of drying during curing and inversely with the time of curing. Of the clay additives studied for enhancing cesium retention, Grundite (while satisfactory) was the least effective. In general, the isotope leach rate followed the order: Cs > Sr > Cm > Pu. The amount of an isotope leached as a function of time depended on the composition of the leachant and varied in the order: distilled water > tap water > grout water. Concentrating the waste by a factor of up to 4 (prior to incorporation into a grout) had little effect on the leach rate of either strontium or cesium. A comparison of the leach data for the grout with results reported previously by other investigators for other products indicates that the grout can provide leach rates comparable to those obtained for wastes incorporated into borosilicate glass. Theoretical relationships that consider diffusion and instantaneous reaction (an equilibrium or time-independent relationship between mobile and immobile forms of a species) were found to be in good agreement with the data for the 28-day-cured grout when the leachant was initially replaced twice per day. The credibility of laboratory results with simulated waste was substantiated by a short-term continuous leach test made on a fragment of a core sample of actual hydrofracture grout. The modified effective diffusivities [10−11 to 10−10 cm2/s (10−9 to 10−8 mm2/s), equivalent to a leach rate of the order of 10−7 g/(cm2 day) (10−9 g/mm2 · day)] for strontium and cesium calculated from these data are comparable to those obtained with specimens prepared in the laboratory.