ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
J. G. Moore, H. W. Godbee, A. H. Kibbey
Nuclear Technology | Volume 32 | Number 1 | January 1977 | Pages 39-52
Technical Paper | Materials in Waste Storage / Radioactive Waste | doi.org/10.13182/NT77-A31736
Articles are hosted by Taylor and Francis Online.
The rates at which strontium, cesium, plutonium, and curium are leached from hydrofracture grout (a modified cement) were measured. These studies utilized the test method proposed by the International Atomic Energy Agency or a modification that exposed smaller specimens with a higher surface-to-volume ratio to a larger volume of leachant. The fraction of an isotope leached varied with the square root of time if the leachant was replaced more frequently than once per day, but was inhibited or depressed if replacement was made less often. The amount of strontium or cesium leached from the grout varied directly with the degree of drying during curing and inversely with the time of curing. Of the clay additives studied for enhancing cesium retention, Grundite (while satisfactory) was the least effective. In general, the isotope leach rate followed the order: Cs > Sr > Cm > Pu. The amount of an isotope leached as a function of time depended on the composition of the leachant and varied in the order: distilled water > tap water > grout water. Concentrating the waste by a factor of up to 4 (prior to incorporation into a grout) had little effect on the leach rate of either strontium or cesium. A comparison of the leach data for the grout with results reported previously by other investigators for other products indicates that the grout can provide leach rates comparable to those obtained for wastes incorporated into borosilicate glass. Theoretical relationships that consider diffusion and instantaneous reaction (an equilibrium or time-independent relationship between mobile and immobile forms of a species) were found to be in good agreement with the data for the 28-day-cured grout when the leachant was initially replaced twice per day. The credibility of laboratory results with simulated waste was substantiated by a short-term continuous leach test made on a fragment of a core sample of actual hydrofracture grout. The modified effective diffusivities [10−11 to 10−10 cm2/s (10−9 to 10−8 mm2/s), equivalent to a leach rate of the order of 10−7 g/(cm2 day) (10−9 g/mm2 · day)] for strontium and cesium calculated from these data are comparable to those obtained with specimens prepared in the laboratory.