ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. R. Berreth, A. P. Hoskins, J. A. Rindfleisch
Nuclear Technology | Volume 32 | Number 1 | January 1977 | Pages 16-24
Technical Paper | Materials in Waste Storage / Radioactive Waste | doi.org/10.13182/NT77-A31733
Articles are hosted by Taylor and Francis Online.
Corrosion measurements on stainless-steel bins used to store high-level waste (HLW) calcines at the Idaho Chemical Processing Plant indicate an internal corrosion rate of 0.13 mm over 500 yr. From a corrosion standpoint, the existing bins or canisters stored in air will last more than 500 yr. Synthetic commercial HLWs solidified by fluidized-bed calcination have been stabilized (nitrates and water removed) at 620 to 720°C to permit their storage in sealed canisters. Heat transfer properties in the canister storage of the basic HLW forms were calculated, based on specified canister configurations, cooling media, and maximum permissible product or canister wall temperature, for a 1500 MTU/yr commercial reprocessing plant. The number of canisters required annually varies from ∼150 to 800 canisters/yr.