ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Daniel William Tedder, Bruce C. Finney
Nuclear Technology | Volume 133 | Number 2 | February 2001 | Pages 242-252
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT01-A3172
Articles are hosted by Taylor and Francis Online.
The effective dissolution of refractory plutonium oxide (fired to T 1000°C) can be carried out by forming ceric nitrate in nitric acid. Preliminary engineering concepts are presented for dissolving such actinide species in the presence of contaminated high-efficiency particulate air (HEPA) filters and incinerator ashes to permit actinide recovery using conventional wet methods. An electrochemical oxidation tank is envisioned with electrodes mounted on the tank lid to facilitate remote operation and maintenance. Contaminated HEPA filters can be treated using an upflow reactor in which ceric nitrate is recirculated between an oxidation tank and a reactor. A membrane separating the electrodes is not required, but special materials of construction are required for all equipment in direct contact with ceric nitrate (e.g., titanium or glass-lined vessels). Since this oxidant is easily reduced to cerous nitrate using oxalic acid, subsequent actinide recovery can be carried out in conventional stainless steel equipment after reduction. The concepts described have been demonstrated on the bench scale.