ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
M. L. Sundquist, J. M. Donhowe
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 140-143
Technical Note | Material | doi.org/10.13182/NT76-A31706
Articles are hosted by Taylor and Francis Online.
To observe the effect of helium and temperature on void formation in aluminum, high-purity foils were irradiated with 1.2- or 1.4-MeV Al+ ions at temperatures from 30 to 120°C, both with and without preinjected helium. Dislocation loops formed in all samples, but the samples without helium produced no voids visible in the transmission electron microscope even after doses up to 2.7 displacements per atom (dpa) (6.5 x 1015 Al+/cm2). Samples preinjected with 0.1, 1, and 10 appm helium and then irradiated at 100 and 120°C produced voids at doses of ∼0.5 dpa (1.2 x 1015 Al+/cm2). With irradiation at 75°C and below, voids formed only in samples preinjected with 0.1 appm helium. With irradiation at 100°C, the average void sizes and void densities were not significantly different for the three helium levels, whereas at 120°C the average void size decreased with increasing helium content and the density increased. With helium levels of 0.1 and 1 appm helium, varying the temperature produced an increase in void size with increasing temperature and a decrease in void density.