ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
E. E. Bloom, F. W. Wiffen, P. J. Maziasz, J. O. Stiegler
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 115-122
Technical Paper | Material | doi.org/10.13182/NT76-A31703
Articles are hosted by Taylor and Francis Online.
Results of a series of neutron irradiation experiments conducted on annealed and 20% cold-worked Type 316 stainless steel in a high-flux mixed-spectrum fission reactor to simulate a controlled thermonuclear reactor (CTR) first wall displacement per atom (dpa) and helium production are reviewed. Using previously suggested criteria of a maximum of 10% volume increase and a minimum of 0.5% uniform strain in a uniaxial tensile test, estimates of temperature and fluence limits for this alloy are made. The large amounts of helium produced by irradiation in the mixed-spectrum fission reactor caused significantly more swelling than occurred in fast reactor irradiations (low helium-generation rates). Cold working effectively suppressed swelling up to 550 to 600°C. Using a criterion of 10% swelling and limited data on the fluence dependence of swelling, a first wall life of 16.5 (MW yr)/m2 (at 530°C) for 20% cold-worked Type 316 stainless steel is estimated. Embrittlement may be the property that limits first wall life. At 350°C acceptable ductility was retained in the cold-worked steel to very high damage levels (49 dpa, 3320 appm helium), and it appears that the 0.5% uniform strain criterion will not be limiting. At higher temperatures, however, this is not the situation. At 650°C the uniform and total plastic strain were zero in samples irradiated to 61 dpa and 4140 appm helium. At 575°C, 0.5% uniform strain was retained in the cold-worked material to relatively high damage levels; however, the fractures were intergranular. The creep-rupture life at 550 and 45 000 psi was reduced by 5 × 104 compared to the unirradiated property. Generally greater embrittlement in the solution-annealed material suggest that cold-worked material would be preferred for CTR first wall structures. The marked reduction in ductility and rupture life and intergranular tensile fractures suggest that stress will have to be maintained at very low levels to prevent fracture. The loss of ductility indicates reductions in fatigue life that must be investigated.