ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Robert L. Fish
Nuclear Technology | Volume 31 | Number 1 | October 1976 | Pages 85-95
Technical Paper | Material | doi.org/10.13182/NT76-A31701
Articles are hosted by Taylor and Francis Online.
The effects of two notch geometries on the tensile properties of fast-neutron-irradiated, annealed Type 304 stainless steel were investigated. Notch strengthening was observed under test conditions that promote transgranular failure accompanied by significant ductility (>5% total elongation) as measured using an unnotched specimen. These conditions existed at room temperature and moderate fluence levels (∼3 to 6 x 1022 n/cm2, E >0.1 MeV, ∼3 to 6 x 1026 n/m2, E >16 fJ). No notch effect was observed at 450 and 700°F (505 and 644 K) at any fluence level investigated. A notch weakening may exist under test conditions promoting low ductility (<1.5% total elongation) intergranular failure. At a nominal tensile strain rate (2.67 x 10-3/min, 4.45 x 10 -5/s), notch weakening was exhibited near 1100°F (866 K) and neutron fluences above 3 x 1022 n/cm2 (3 x 1026 n/m2). At a nominal strain rate, the notch sensitivity is independent of notch geometry between radii of 0.003 and 0.030 in. (0.076 and 0.76 mm). The notch sensitivity becomes notch geometry dependent at higher strain rates due to higher ductilities associated with a transition in the deformation and failure mode.