ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
T. Roger Billeter, L. D. Blackburn
Nuclear Technology | Volume 31 | Number 2 | November 1976 | Pages 264-275
Technical Paper | Technique | doi.org/10.13182/NT76-A31689
Articles are hosted by Taylor and Francis Online.
Excellent sensitivity and accuracy in the measurement of deformation occurring in materials tests have been achieved with a newly developed microwave frequency sensor and instrumentation system. The strain sensor comprises a microwave cavity resonating in the circular TE113 and TM110 modes. Detection of axial strain occurs due to the changes of resonant frequency incurred by cavity length changes. Axial strain sensitivity for the TE113 mode was 6 × 10−6 per MHz, whereas radial dimensions of the cavity were related to frequency of the TM110 mode. Aperture coupling of the cavity to the end wall of Ka band waveguide provided signal excitation of the two monitored modes. Phase-locked frequency stability enabled digital count/display of resonant frequencies to within 70 kHz at 35 GHz. Room temperature tension test results demonstrated a strain measuring sensitivity (±1 × 10−6) and accuracy (±1% of the measured value) equivalent to those of electrical resistance strain gauges. The system yields accurate measurements of elastic strains as well as small departures from elastic response and hysteresis behavior during unloading and reloading. Creep test results confirm that measurement sensitivity and accuracy are retained in elevated temperature tests. Strain response on loading, subsequent creep deformation, and creep recovery after unloading can all be measured in detail. The stability of microwave sensor calibration after exposure for 22 × 106 s at temperatures from 728 to 866 K is shown to be excellent.