ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
John W. McKlveen, Michael Schwenk
Nuclear Technology | Volume 31 | Number 2 | November 1976 | Pages 257-263
Technical Paper | Technique | doi.org/10.13182/NT76-A31688
Articles are hosted by Taylor and Francis Online.
Thermoluminescent dosimetry (TLD) was successfully evaluated as an in-core thermal-neu-tron-flux determinant. The LiF crystals enriched with either 6Li or 7Li provided two effective neu-tron-gamma discrimination techniques. The first method used both types of crystals. The 6LiF dosimeters, which have large thermal-neutron cross sections, detected both neutrons and gamma radiation, while the 7LiF dosimeters, possessing negligible thermal-neutron attenuation characteristics, monitored the gamma component only. The dosimeters were inserted into a reactor for a known time interval and read on a commercially available detection system, and the difference in dosimeter exposure yielded a direct measure of neutron flux. The second technique used bare and cadmium-covered 7LiF dosimeters. The bare crystals detected reactor gammas, while those encapsulated in cadmium measured reactor gammas plus capture gammas from the Cd(n, γ ) reaction. The difference in exposures provided the capture-gamma contribution, which was proportional to reactor flux. Experiments using a subcritical and a TRIGA reactor revealed exposure rate to neutron flux sensitivities of 1.4 × 10−7 R/sec per ϕ and 2.6 × 10−8 R/sec per ϕ for the respective techniques. Accurate flux measurements were obtained over a range spanning 102 to 1012 n/(cm2 sec). At higher fluxes, the dosimeters experienced radiation damage and readings became unreliable. The TLD results were compared against BF3 detection, foil activation, and fission chambers to derive an empirical exposure rate to the flux conversion factor.