ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
John W. McKlveen, Michael Schwenk
Nuclear Technology | Volume 31 | Number 2 | November 1976 | Pages 257-263
Technical Paper | Technique | doi.org/10.13182/NT76-A31688
Articles are hosted by Taylor and Francis Online.
Thermoluminescent dosimetry (TLD) was successfully evaluated as an in-core thermal-neu-tron-flux determinant. The LiF crystals enriched with either 6Li or 7Li provided two effective neu-tron-gamma discrimination techniques. The first method used both types of crystals. The 6LiF dosimeters, which have large thermal-neutron cross sections, detected both neutrons and gamma radiation, while the 7LiF dosimeters, possessing negligible thermal-neutron attenuation characteristics, monitored the gamma component only. The dosimeters were inserted into a reactor for a known time interval and read on a commercially available detection system, and the difference in dosimeter exposure yielded a direct measure of neutron flux. The second technique used bare and cadmium-covered 7LiF dosimeters. The bare crystals detected reactor gammas, while those encapsulated in cadmium measured reactor gammas plus capture gammas from the Cd(n, γ ) reaction. The difference in exposures provided the capture-gamma contribution, which was proportional to reactor flux. Experiments using a subcritical and a TRIGA reactor revealed exposure rate to neutron flux sensitivities of 1.4 × 10−7 R/sec per ϕ and 2.6 × 10−8 R/sec per ϕ for the respective techniques. Accurate flux measurements were obtained over a range spanning 102 to 1012 n/(cm2 sec). At higher fluxes, the dosimeters experienced radiation damage and readings became unreliable. The TLD results were compared against BF3 detection, foil activation, and fission chambers to derive an empirical exposure rate to the flux conversion factor.