ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
S. R. Bierman
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 339-347
Technical Paper | Chemical Processing | doi.org/10.13182/NT76-A31670
Articles are hosted by Taylor and Francis Online.
Pulsed neutron source measurements have been made on a heterogeneous lattice of plutonium-uranium oxide fuel rods in 258 g(Pu + U)/ℓ nitrate solution containing up to 1.34 g Gd/ℓ. The experimental system on which the measurements were made is not unlike that encountered in fuel element dissolvers. The objectives of the measurements were to demonstrate the use of the pulsed neutron source technique for measuring the effectiveness of a neutron poison in reducing the reactivity of such a system and to determine the kinetic parameter β/l for these systems. Reductions in keff from unity down to 0.64 were observed upon the addition of 1.34 g Gd/ℓ to a critical system. Based on the prompt and delayed critical conditions determined for each gadolinium concentration, a continuous reduction, from $4.35/cm of solution depth down to $0.42/cm, was observed in the reactivity worth of the plutonium-uranium nitrate solution as gadolinium was added to the solution. The values of β/l as a function of gadolinium concentration was observed to vary essentially linearly from 197 to 262 sec−1 as the gadolinium concentration was increased to 1.28 g/ℓ. At the maximum gadolinium concentration of 1.34 g/ℓ, the measurements indicated a β/l value lying above this linear correlation, but not far enough above that it could not be explained by the 0.4% difference observed in the approach-to-critical and the pulsed-neutron-determined delayed critical conditions for this system. The effective delayed neutron fraction, βeff, for these mixed plutonium-uranium systems was calculated to be 0.0033 and was essentially constant over the gadolinium concentration covered. The βeff, calculational technique was subjected to an experimental-calculational verification and was found to be adequate.