ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Conrad V. Chester, Rowena O. Chester
Nuclear Technology | Volume 31 | Number 3 | December 1976 | Pages 326-338
Technical Paper | Reactor Siting | doi.org/10.13182/NT76-A31669
Articles are hosted by Taylor and Francis Online.
The implications of a nuclear power industry in a large nuclear war in the year 2000 were examined from the standpoints of (a) target value of reactors, (b) consequences for nearby population, and (c) long-term consequences of adding reactor fission products to the fallout from the weapons. The primary conclusion is that fallout augmentation by targeting nuclear reactors is of marginal military or strategic value. With the anticipated missile guidance accuracy by the year 2000, it mill be feasible to excavate all reactors and high-level liquid waste tanks, and add those fission products to the fallout. However, the augmented fallout is not intense enough for long-term interdiction of strategic amounts of transportation or food production capacity under probable emergency standards for radiation exposure. On the basis of contribution to gross national product, 2400-MW(e) nuclear or fossil-fueled power plants are competitive targets compared to the rest of the economy for 1-Mton warheads, and isolated 1000-MW(e) plants are competitive targets for 125-kt warheads, given the estimated size of the USSR strategic force. If the U.S. adopts a USSR-style civil defense plan, casualties from direct weapon effects on reactors will be largely avoided, and the principal effect of fallout augmentation over that caused by the attack alone would be doubling the 90Sr contamination on essential grain-growing areas. In the population near nuclear power reactors, fatalities from the release of radioactive aerosols from damaged reactors can be essentially eliminated by the use of expedient respiratory protection by the population downwind of the damaged reactor. The potential dose-commitment from the attack alone is estimated to cause in the U.S. an increase of 30% in the cancer death rate. However, this increase in death rate would not show up for more than a decade after the attack. Fallout augmentation from cratering reactors and high-level waste tanks could result in doubling the delayed cancer death rate if (a) the USSR is willing to spend an additional 400 to 600 warheads to produce this effect, and (b) fission product wastes are retained in surface or near-surface storage for 10 y after reprocessing.