ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. Bentley, F. W. Wiffen
Nuclear Technology | Volume 30 | Number 3 | September 1976 | Pages 376-384
Technical Paper | Uranium Resource / Material | doi.org/10.13182/NT76-A31651
Articles are hosted by Taylor and Francis Online.
Vanadium-base alloys, V—10% Cr, V—20% Ti, and VANSTAR-7, alloys with potential for fusion reactor application, have been irradiated in the Experimental Breeder Reactor II in the temperature range of 400 to 800°C, mainly to a fluence of 1.5 × 1022 n/cm2 (>0.1 MeV). Swelling determined both from immersion density measurements and void distribution data obtained by transmission electron microscopy showed that the V—20% Ti was completely resistant to void formation for these irradiation temperatures and for the highest fluence achieved, 6 × 1022 n/cm2. Voids formed in both the V—10% Cr and VANSTAR-7 alloys, but only the V—10% Cr, irradiated at 690 and 805° C, showed technologically significant swelling, near 1%. Swelling in this alloy at lower temperatures and in VANSTAR-7 at all temperatures was below 0.1%. Dislocation structures were complex in all three alloys. In the V—20% Ti, the scale of the dislocation network coarsened with increasing irradiation temperature. In the other two alloys, the scale of the damage, both dislocation and void components, was similar for irradiation at 496 and 580°C, but coarsened considerably to produce similar structures for irradiations at 690 and 805°C. In many cases, detail of the microstructure was obscured by strongly diffracting zones that are believed to be impurity related. Of the three alloys examined, V—20% Ti possesses the greatest swelling resistance for the irradiation temperatures and fluences achieved and thus is judged to have the greatest potential for use in fusion reactors.