ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
T. W. Kerlin, E.M. Katz, J. G. Thakkar, J. E. Strange
Nuclear Technology | Volume 30 | Number 3 | September 1976 | Pages 299-316
Technical Paper | Uranium Resource / Reactor | doi.org/10.13182/NT76-A31645
Articles are hosted by Taylor and Francis Online.
A mathematical model for predicting the dynamic response of the H. B. Robinson pressurized water reactor plant was formulated and compared with results from measurements made during full-power operation of the plant. The model was based on the basic conservation laws for neutrons, mass, and energy; design data from the safety analysis report were used to evaluate the necessary coefficients. The model included representations for point kinetics, core heat transfer, piping, pressurizer, and the steam generator. The experiment involved perturbations in control rod position and main steam valve opening. Periodic binary input signals and step inputs were used. Theoretical and experimental frequency responses were obtained from the model and the test data. The comparison showed that the model was capable of good predictions for reactivity perturbations and fair predictions for steam valve perturbations. A method was also demonstrated for using the test data for at-power determination of the differential control rod worth.