ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kevin W. Brinckman, Mark A. Chaiko
Nuclear Technology | Volume 133 | Number 1 | January 2001 | Pages 133-139
Technical Note | Thermal Hydraulics | doi.org/10.13182/NT01-A3164
Articles are hosted by Taylor and Francis Online.
The TRAC-BF1 computer code is used to analyze the fluid pressure response for a waterhammer event in a water-filled pipe with entrapped air. TRAC's capabilities are assessed by comparison against a method-of-characteristics (MOC) solution of pressure-wave propagation in a gas/liquid interface system. A vertically oriented pipe with air initially occupying up to 10% of the pipe volume is considered. A step increase in pressure is imposed at the inlet, and the fluid pressure response in the pipe is calculated. TRAC correctly predicts that the peak pressure with entrapped air is substantially higher than it would be in a purely liquid system. For an initial air volume equal to 10% of the pipe volume, the peak pressure calculated by TRAC compares within 1% of the MOC result. For smaller initial air volumes, TRAC underpredicts the peak pressure disturbance by up to 14% compared to the MOC. The TRAC solution exhibits a degree of long-term artificial damping, but in all cases it captures the basic features of the pressure response for a waterhammer event in a system with entrapped air.