ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
C. L. Schuske, Hugh C. Paxton
Nuclear Technology | Volume 30 | Number 2 | August 1976 | Pages 101-137
Technical Paper | Criticality Array Data and Calculational Method / Chemical Processing | doi.org/10.13182/NT76-A31612
Articles are hosted by Taylor and Francis Online.
The first measurements with arrays of fissile metal were performed at the Los Alamos Scientific Laboratory in 1947 and the first with fissile solutions were performed at the Oak Ridge Critical Experiments Facility in 1949. Since then, there have been many other significant experiments at several U.S. laboratories including, in addition, Rocky Flats, Battelle-Pacific Northwest Laboratory, and the Lawrence Livermore Laboratory. Array tests were the primary sources of data used in developing criticality criteria for fissile-process plants, and they provided the basis for several empirical storage models that are still in use. Some of the experimental data also serve to validate Monte Carlo neutron transport calculations now used extensively by the nuclear safety engineer in the design of storage and processing facilities. The authors feel that there should be additional experimental data for further validation of calculational methods relied upon for criticality safety evaluation. The deficient areas include low-235U-enriched uranium, 233U with and without thorium, and plutonium-uranium mixtures. Also, critical data are lacking for arrays with the concrete reflectors normally found in process-plant environments , and additional experiments on concrete-reflected arrays are needed.