ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
Samuel G. Varnado, Gary A. Carlson
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 415-427
Technical Paper | Fusion Reactor Material / Reactor | doi.org/10.13182/NT76-A31606
Articles are hosted by Taylor and Francis Online.
Electrical power generation by controlled fusion may provide a partial solution to the world’s long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron beams to compress a deuterium-tritium (D-T) fuel pellet. A power balance analysis applied to a conceptual electron-beam fusion power plant indicates that energy gains of between 5 and 16 are required from the fuel pellet for economic feasibility. To deliver an average power of 100 MW(e), the reactor must operate at a pulse rate of ∼35 Hz, assuming an electron-beam energy of 1 MJ per pulse. The use of a fusion-fission hybrid reactor substantially relaxes the pellet gain requirement, and allows breakeven plant operation at near unit pellet gain. Calculations show that x rays and ions will comprise an important part of the total energy release (30% for a pellet gain of 7.9). The x-ray radiation has an ∼350-eV blackbody spectrum. The energy of ions from the gold shell surrounding the D-T fuel lies between 100 and 500 keV. Consideration of the response of diode and first-wall materials to the incident x-ray and ion fluxes shows that wet walls of lithium or tin over niobium are not desirable, due to spallation or other stress wave damage, engineering complexity, and excessive materials usage and cost. A solid wall protected by a graphite cloth shield offers the maximum protection to the surrounding blanket structure.