ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
John R. McCarty, Michael J. Kolar
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 406-414
Technical Paper | Fusion Reactor Material / Reactor | doi.org/10.13182/NT76-A31605
Articles are hosted by Taylor and Francis Online.
Containment design pressure for a high-temperature gas-cooled reactor is determined by its response to a design basis depressurization accident. The effects of heat transfer to internal structures and of helium mixing significantly affect the response. In the mathematical model, the containment is divided into two regions; a lower region that contains only air, and an upper region that contains all the helium and whatever air is assumed to mix. Heat sinks are distributed vertically. At each instant, a given heat sink is calculated to be in either the unmixed region or the mixed region. In this way, both the mixing fraction and the heat transfer data can be changed. The peak pressure can be reduced by (a) placing heat sinks higher in the containment, (b) increasing the mixing fraction, and (c) accounting for heat transfer as the helium rises through the lower region.