ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
Shang-Fon Su, Gene L. Woodruff, N. J. McCormick
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 392-405
Technical Paper | Fusion Reactor Material / Reactor | doi.org/10.13182/NT76-A31604
Articles are hosted by Taylor and Francis Online.
The neutronics of several fusion-fission hybrid reactors were studied to develop a design capable of producing 233U while maintaining a self-sufficiency in tritium. High breeding rates are achieved by using an equilibrium concentration of 238U and 239Pu instead of thorium in a converter region to produce a significantly greater multiplication of the 14-MeV source neutrons. The final blanket design has an 18-cm neutron converter that consists of 0.5-in-diam pins of 92% 238U/8% 239Pu with a 0.7-in. pitch. The 40-cm breeding region consists of 0.5-in.-diam pins of ThC with 0.6-in. pitch; the overall blanket thickness is 102 cm. The tritium and fissile breeding ratios are 1.052 and 1.880, respectively, and there are 3.537 233U nuclei produced per fusion neutron. An analysis of the performance of the blanket over a 2-yr period was carried out, including the buildup and depletion of fissionable nuclides and fission products. The final design requires an inventory of ∼30 000 kg of 239Pu, which must be produced for the design to be viable. A preliminary static and time-dependent study was done for a startup cycle to serve this purpose.