ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Shang-Fon Su, Gene L. Woodruff, N. J. McCormick
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 392-405
Technical Paper | Fusion Reactor Material / Reactor | doi.org/10.13182/NT76-A31604
Articles are hosted by Taylor and Francis Online.
The neutronics of several fusion-fission hybrid reactors were studied to develop a design capable of producing 233U while maintaining a self-sufficiency in tritium. High breeding rates are achieved by using an equilibrium concentration of 238U and 239Pu instead of thorium in a converter region to produce a significantly greater multiplication of the 14-MeV source neutrons. The final blanket design has an 18-cm neutron converter that consists of 0.5-in-diam pins of 92% 238U/8% 239Pu with a 0.7-in. pitch. The 40-cm breeding region consists of 0.5-in.-diam pins of ThC with 0.6-in. pitch; the overall blanket thickness is 102 cm. The tritium and fissile breeding ratios are 1.052 and 1.880, respectively, and there are 3.537 233U nuclei produced per fusion neutron. An analysis of the performance of the blanket over a 2-yr period was carried out, including the buildup and depletion of fissionable nuclides and fission products. The final design requires an inventory of ∼30 000 kg of 239Pu, which must be produced for the design to be viable. A preliminary static and time-dependent study was done for a startup cycle to serve this purpose.