ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
G. R. Odette, D. R. Doiron
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 346-368
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31600
Articles are hosted by Taylor and Francis Online.
Neutron cross sections for displacements and post-short-term cascade annealing defects are derived from nuclear kinematics calculations of primary atomic recoil energy distributions and the number of secondary defects produced per primary as a function of recoil energy. For the first time, recoil kinematics of charged- and multiple-particle emission reactions are treated rigorously using a compound-nucleus evaporation spectrum nuclear model. Secondary-defect production functions, derived from computer simulation experiments, are taken from the literature. Spectral-averaged defect production cross sections for a fusion reactor first-wall-type environment are on the order of 1.5 to 2.5 times those for a fast fission reactor core-type spectrum. The indicated range of uncertainty is primarily due to secondary-defect production model sensitivity. Nuclear model and data errors are expected to become more significant at high neutron energies, greater than ∼20 MeV. Fusion reactor environments are found to produce some very energetic recoils and high-energy release events due to charged-particle reactions such as (n, α).