ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
H. Kamide, K. Hayashi, T. Isozaki, M. Nishimura
Nuclear Technology | Volume 133 | Number 1 | January 2001 | Pages 77-91
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3160
Articles are hosted by Taylor and Francis Online.
A proper assessment of core thermohydraulics under natural circulation conditions is important so that the full potential of the inherent, passive feature of a fast reactor can be used. When the heat exchangers of the decay heat removal system are operated in the upper plenum of a reactor vessel, cold sodium exiting the heat exchangers may penetrate into the gap regions between fuel subassemblies; this gap flow between the wrapper tubes of subassemblies is called interwrapper flow (IWF). During natural circulation decay heat removal, IWF will significantly modify the flow and temperature distributions in the subassemblies. Sodium experiments were carried out to investigate these phenomena, using a test section consisting of seven subassemblies housed and connected to an upper plenum. The cooling effect of IWF on the fuel subassemblies was evaluated and a new nondimensional parameter was deduced to characterize this effect. On the other hand, IWF reduced the natural circulation flow in the primary loop due to a temperature decrease in the upper part of the core. A balance between the cooling effect and the flow reduction effect is discussed. Three-dimensional analyses were performed to establish an estimation method for IWF. For the temperature decreases due to IWF at the hottest point in the subassemblies there was good agreement between experiments and predictions.