ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. L. Simmons, Donald J. Dudziak
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 337-345
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31599
Articles are hosted by Taylor and Francis Online.
An essential element of any fusion or fission reactor materials development effort is the availability of irradiation facilities for conducting radiation effects experiments. A Radiation Effects Facility (REF) was provided for such studies at the Los Alamos Meson Physics Facility. Neutron spectra at the REF can be tailored to approximate those in either a fusion or fission reactor, while providing flux levels of ∼1.4 × 1018 m−2 s−1 at design maximum beam currents. An intranuclear-cascade/evaporation model was used for computing neutron production. Detailed Monte Carlo neutron transport calculations were performed, some of which were experimentally verified in a foil dosimetry program. Such calculations provide the radiation effects experimentalist with information on spatial-spectral variations of the neutron flux over much of the easily accessible experimental volume (∼19 000 cm3), which includes irradiation specimen capsule locations and a rabbit tube. From these data, radiation damage indices such as ratios of parts per million helium to displacements per atom can be calculated and compared to those anticipated in fusion reactor blankets or fast fission reactor cores.