ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
L. H. Rovner, G. R. Hopkins
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 274-302
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31593
Articles are hosted by Taylor and Francis Online.
The (low-atomic-number ceramic) materials carbon, SiC, Be2C, B4C, TiC, BN, Si3N4, Al2O3, and BeO provide a range of property values that are useful for evaluating range of applicability of low-atomic-number ceramic materials in fusion reactors. A survey of recent literature provides a base for conceptual design analyses of two first wall concepts: (a) a radiation-cooled simple plate liner and (b) a pressurized helium, forced convection-cooled tubular assembly. The first case is limited in heat load by maximum material temperature, and the second by either temperature or stress. Maximum temperatures are limited by vapor pressure or chemical reaction rates with plasma hydrogen, both resulting in release of impurities to the plasma. Silicon carbide and carbon appear most suitable for first wall materials, with estimated wall loading limits in the range from 1 to >5 MW/m2 of incident 14-MeV neutrons.