ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
L. H. Rovner, G. R. Hopkins
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 274-302
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31593
Articles are hosted by Taylor and Francis Online.
The (low-atomic-number ceramic) materials carbon, SiC, Be2C, B4C, TiC, BN, Si3N4, Al2O3, and BeO provide a range of property values that are useful for evaluating range of applicability of low-atomic-number ceramic materials in fusion reactors. A survey of recent literature provides a base for conceptual design analyses of two first wall concepts: (a) a radiation-cooled simple plate liner and (b) a pressurized helium, forced convection-cooled tubular assembly. The first case is limited in heat load by maximum material temperature, and the second by either temperature or stress. Maximum temperatures are limited by vapor pressure or chemical reaction rates with plasma hydrogen, both resulting in release of impurities to the plasma. Silicon carbide and carbon appear most suitable for first wall materials, with estimated wall loading limits in the range from 1 to >5 MW/m2 of incident 14-MeV neutrons.