ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
David Dew-Hughes, Thomas S. Luhman, Masaki Suenaga
Nuclear Technology | Volume 29 | Number 3 | June 1976 | Pages 268-273
Technical Paper | Fusion Reactor Material / Material | doi.org/10.13182/NT76-A31592
Articles are hosted by Taylor and Francis Online.
Aluminum has been added to the niobium core, and in various quantities to the copper-tin bronze, of composite wires that have been reacted to form Nb3Sn. Small amounts of aluminum in the bronze enhance the growth rate of Nb3Sn layers; aluminum in the core, and greater amounts in the bronze displacing some of the tin, cause a reduction in growth rate. Layer thickness is a function of (reaction time)0.67. Microprobe analysis revealed the presence of aluminum in the reacted layers only for specimens with aluminum additions to the core and in substantial quantities to the matrix. Critical current densities are primarily a function of reacted layer thickness; composition and temperature of reaction play a secondary role. Specimens in which some aluminum was successfully incorporated in thin (1- to 1.5-µm) layers of Nb3Sn showed maximum current densities, close to 109 A/m2 in transverse fields of 16 T, and 7 to 8 × 109 A/m2 at 10 T. In fields up to 8T these materials are superior to the best reported V3 Ga.