ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Luigi Brusa, Alessandro Bianchi, Giancarlo Fruttuoso, Antonio Manfredini, Francesco Oriolo, Mario D. Carelli, Robert P. Kendig, Fred E. Peters
Nuclear Technology | Volume 133 | Number 1 | January 2001 | Pages 63-76
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT01-A3159
Articles are hosted by Taylor and Francis Online.
Several advanced nuclear plant concepts are characterized by the use of innovative cooling systems that remove the heat released inside the containment following a hypothetical accident, such as a loss-of-coolant accident, through passive heat transfer mechanisms. The design and installation of a localized passive containment cooling system (PCCS) inside a double-wall concrete containment requires the reliable knowledge of temporal and spatial distribution of noncondensable gas concentration, especially hydrogen, in a multicompartment geometry. Testing was conducted in the Large-Scale Containment Test Facility located at the Westinghouse Science and Technology Center in Pittsburgh, and the testing was modified to simulate in approximately one-tenth scale the main features of a concrete containment, designed by the Italian National Electric Utility (ENEL), in which the heat is removed through internal heat exchangers (HX) located in the dome region, and connected by an intermediate fluid loop to external HXs placed outside the double barrier concrete containment. No active component like pumps or human intervention are required for the operation of the system. The facility instrumentation, the test program, and the experimental results are described along with the first results obtained in the application of the FUMO code to the analysis of these experimental tests. The experimental data measured during the tests include temperature distributions inside the containment, helium concentrations at four internal locations, and laser Doppler anemometer measures to determine the atmosphere mixing under different simulated accident conditions. The experimental results indicate that helium, which simulates the hydrogen that may be released during some accident sequences, is distributed rather homogeneously inside the facility. The very good mixing exhibited by the helium indicates that the localized PCCS induces efficient convective motions inside the containment atmosphere, and this is a positive indication for safety analysis.