ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Kanji Tasaka
Nuclear Technology | Volume 29 | Number 2 | May 1976 | Pages 239-248
Analysis | doi.org/10.13182/NT76-A31583
Articles are hosted by Taylor and Francis Online.
A method has been developed to estimate the irradiation history and burnup of a spent fuel by gamma-ray spectroscopy. The gamma-ray spectrum, measured by using a Ge(Li) detector, is analyzed by the standard spectrum method to obtain the activity of the fission product. The irradiation history is fitted by the least-squares method to reproduce the activity of each fission-product nuclide. For this purpose, the irradiation history is divided into several time intervals and the contribution of each interval to the production of each fission product is calculated analytically by repeatedly using the Bateman equation. The method was successfully applied to the Materials Testing Reactor-type fuel element irradiated in the core of Japan Research Reactor-4 for about four years.