ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
N. J. McCormick, R. E. Schenter, R. P. Omberg
Nuclear Technology | Volume 29 | Number 2 | May 1976 | Pages 200-208
Fuel | doi.org/10.13182/NT76-A31579
Articles are hosted by Taylor and Francis Online.
Gas tagging consists of adding small amounts of gas with a unique isotopic composition for each assembly to nuclear reactor fuel and control assemblies. During subsequent irradiation, when any pin of an assembly fails, the tag gas released along with other gas from the pin plenum enables location of the defective assembly by a mass spectrometric analysis of a sample of the reactor cover gas. The general procedure presented for the design of a gas tag system has been used to produce three designs for the gas ratios for Cores I through IV of the Fast Flux Test Facility. The designs are compared with and without “age tagging,” the use of information from tag gas burnup to help discriminate between failures of different assemblies. A few comments included on the operation of a gas tag system help ensure that the system will operate within the assumptions made in the design of the gas tag ratios.