ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. Karsten, G. Mühling, H. Plitz
Nuclear Technology | Volume 28 | Number 2 | February 1976 | Pages 208-215
Technical Paper | Fuel | doi.org/10.13182/NT76-A31561
Articles are hosted by Taylor and Francis Online.
The carbide fuel which will be introduced into the SNR for the first time after 1980, will be helium bonded, with a low linear heat rating and fuel density. This design appears to be the least problematic one for a medium burnup goal. The restriction to a moderate design arises to a certain extent from economical and safety reasons, but mainly can be attributed to uncertainties in extrapolation to a very high performance level. This can be demonstrated in a general discussion valid for both oxide and carbide. Due to the fact that the fuel elements of a large power plant with a peak burnup of 100 MWd/kg will undergo radiation damages, which cannot be demonstrated by experimental fuel pins in test (DFR, Rapsodie) or demonstration reactors (SNR, PFR, etc.) for the first generation, licensable maximum burnups will be in the range of 70 MWd/kg. It is impossible to perform tests outside the future large power plants with a relevant neutron dose-to-fuel burnup ratio. Therefore, in the German program a continuous development has been underway since 1968, in which separate medium burnups and neutron doses are demonstrated in test and demonstration reactors. In addition, the fuel fabrication process will be steadily improved in a pilot fabrication plant.