ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
N. J. Olson, C. M. Walter, W. N. Beck
Nuclear Technology | Volume 28 | Number 1 | January 1976 | Pages 134-151
Technical Paper | Fuels for Pulsed Reactor / Fule | doi.org/10.13182/NT76-A31547
Articles are hosted by Taylor and Francis Online.
A reasonably large number (39) of Mark-IA driver fuel cladding failures have been obtained from run-to-failure experiments in the Experimental Breeder Reactor II over the past few years. These experiments were designed to yield failure information for various design variables and to qualify the fuel element design to a burnup limit such that the risk of an end-of-design-life failure was exceedingly small for normal operating conditions. None of the design variables or operating conditions tested had a significant effect on the failure statistics. The failure mode fit the Weibull statistical failure model and is characterized by a burnup threshold of 3.0 at.% maximum burnup (BUmax), which must be surpassed prior to failure. The cumulative failure probability [F(BUmax)] for peak linear pin powers between 6.4 and 8.0 kW/ft and maximum cladding temperatures from 890 to 1050°F can be expressed as Once 3.0 at.% BUmax is achieved, it was also found experimentally that the failure rate could be decreased over a small burnup interval by lowering the power ratings. The Type 304L stainless-steel cladding in-reactor fracture mode for the Mark-IA driver fuel elements is characterized by inter granular crack propagation that originates at the outside surface of the cladding. This mode of failure appears to be assisted by stress corrosion and potentially deleterious grain boundary precipitation. Although the fracture mode is brittle in nature, uniform mechanical hoop strains >1% are achieved prior to failure.