ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
N. J. Olson, C. M. Walter, W. N. Beck
Nuclear Technology | Volume 28 | Number 1 | January 1976 | Pages 134-151
Technical Paper | Fuels for Pulsed Reactor / Fule | doi.org/10.13182/NT76-A31547
Articles are hosted by Taylor and Francis Online.
A reasonably large number (39) of Mark-IA driver fuel cladding failures have been obtained from run-to-failure experiments in the Experimental Breeder Reactor II over the past few years. These experiments were designed to yield failure information for various design variables and to qualify the fuel element design to a burnup limit such that the risk of an end-of-design-life failure was exceedingly small for normal operating conditions. None of the design variables or operating conditions tested had a significant effect on the failure statistics. The failure mode fit the Weibull statistical failure model and is characterized by a burnup threshold of 3.0 at.% maximum burnup (BUmax), which must be surpassed prior to failure. The cumulative failure probability [F(BUmax)] for peak linear pin powers between 6.4 and 8.0 kW/ft and maximum cladding temperatures from 890 to 1050°F can be expressed as Once 3.0 at.% BUmax is achieved, it was also found experimentally that the failure rate could be decreased over a small burnup interval by lowering the power ratings. The Type 304L stainless-steel cladding in-reactor fracture mode for the Mark-IA driver fuel elements is characterized by inter granular crack propagation that originates at the outside surface of the cladding. This mode of failure appears to be assisted by stress corrosion and potentially deleterious grain boundary precipitation. Although the fracture mode is brittle in nature, uniform mechanical hoop strains >1% are achieved prior to failure.