ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
J. M. Cardito, E. V. Somers, J. H. McWhirter
Nuclear Technology | Volume 28 | Number 1 | January 1976 | Pages 119-126
Technical Paper | Fuels for Pulsed Reactor / Reactor Siting | doi.org/10.13182/NT76-A31545
Articles are hosted by Taylor and Francis Online.
The containment capability of mined subterranean caverns for siting nuclear power plants depends on the flow of groundwater through porous media surrounding the cavern. For a simple cylindrical containment cavern, design correlations were developed relating depth of burial to cavern overpressure. Considering 50 psig as the maximum containment overpressure following a postulated loss-of-coolant accident (LOCA), the minimum depth of burial below the groundwater table for a cavern of 50-ft radius is ∼200 ft. These conditions assure no cavern water flow through the rock to the atmosphere and no cavern contaminant seepage into the groundwater following a postulated LOCA.