ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Toshio Kawai, Hiroshi Motoda, Takashi Kiguchi, Michihiro Ozawa
Nuclear Technology | Volume 28 | Number 1 | January 1976 | Pages 108-118
Technical Paper | Fuels for Pulsed Reactor / Reactor | doi.org/10.13182/NT76-A31544
Articles are hosted by Taylor and Francis Online.
The OPROD computer code has been developed to generate a long-term control rod program, a series of control rod patterns that optimizes a cycle length within various operational constraints. In the algorithm, the optimization problem is decomposed into two hierarchies. In the inner loop, a time-invariant target power distribution is assumed, and a control rod pattern is determined so as to best fit the power distribution to the target within the constraints at each burnup step. The target is then improved in the outer loop to achieve a longer cycle length. The code consists of two major parts: a three-dimensional boiling water reactor (BWR) core simulator and MAP, the method of approximate programming. It readily generates a long-term control rod program of BWRs without trial search by core-management engineers. The OPROD has therefore facilitated prompt response to varying operating conditions and the investigation of a conflicting relationship between the thermal limitation and the cycle length.