ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reboot: Nuclear needs a success . . . anywhere
The media have gleefully resurrected the language of a past nuclear renaissance. Beyond the hype and PR, many people in the nuclear community are taking a more measured view of conditions that could lead to new construction: data center demand, the proliferation of new reactor designs and start-ups, and the sudden ascendance of nuclear energy as the power source everyone wants—or wants to talk about.
Once built, large nuclear reactors can provide clean power for at least 80 years—outlasting 10 to 20 presidential administrations. Smaller reactors can provide heat and power outputs tailored to an end user’s needs. With all the new attention, are we any closer to getting past persistent supply chain and workforce issues and building these new plants? And what will the election of Donald Trump to a second term as president mean for nuclear?
As usual, there are more questions than answers, and most come down to money. Several developers are engaging with the Nuclear Regulatory Commission or have already applied for a license, certification, or permit. But designs without paying customers won’t get built. So where are the customers, and what will it take for them to commit?
James M. Taub
Nuclear Technology | Volume 28 | Number 1 | January 1976 | Pages 77-86
Technical Paper | Fuels for Pulsed Reactor / Fuel | doi.org/10.13182/NT76-A31540
Articles are hosted by Taylor and Francis Online.
The use of pulsed reactors for the evaluation of materials and components has been on the increase and pulsed reactors to handle large components are under consideration. Pulsed reactors currently operate at a 30 to 50 u sec pulse width and a neutron yield of 5 × 1016 fission/pulse; improved capability would move toward even smaller pulse widths and neutron yields in the 1017 fission/pulse range. The gamma phase U—10 Mo alloy with highly enriched uranium has been the fuel alloy used in most pulsed reactors. The fabrication of U—10 Mo alloy fuel plates for the new SPR-III reactor at Sandia Laboratories, Albuquerque, New Mexico, required a detailed review of all processing operations because of the highly enriched uranium and the related criticality considerations. It was necessary to cast the maximum allowable mass of highly enriched uranium (36 kg) in order to make a single fuel plate. The low carbon impurity level specified was obtained with the formulation of a new and highly successful composite coating material for graphite crucibles and molds. The plate distortions which occur in water quenching the alloy from the 950°C gamma phase to room temperature were eliminated by quenching between cold platens in a hydraulic press. Typical mechanical properties obtained on cast, heat treated plates were 930 MPa yield strength, 940 MPa tensile strength, 12.9% elongation in 25.4 mm, and 35.4% reduction in area.