ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Yuezhou Wei, Mikio Kumagai, Yoichi Takashima, Giuseppe Modolo, Reinhard Odoj
Nuclear Technology | Volume 132 | Number 3 | December 2000 | Pages 413-423
Technical Paper | Reprocessing | doi.org/10.13182/NT00-A3154
Articles are hosted by Taylor and Francis Online.
To develop an advanced partitioning process by extraction chromatography using a minimal organic solvent and compact equipment to separate minor actinides such as Am and Cm from nitrate acidic high-level waste (HLW) solution, several novel silica-based extraction resins have been prepared by impregnating organic extractants into the styrene-divinylbenzene copolymer, which is immobilized in porous silica particles (SiO2-P). The extractants include octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO), di(2-ethylhexyl)-phosphoric acid (HDEHP), and bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301). Compared to conventional polymer-matrix resins, these new types of extraction resin are characterized by rapid kinetics and significantly low pressure loss in a packed column.The results of separation experiments revealed that trivalent actinides and lanthanides can be separated from other fission products, such as Cs, Sr, and Ru in simulated HLW solution containing concentrated nitric acid by extraction chromatography using a CMPO/SiO2-P resin-packed column. Satisfactory separation between Am(III) and a macro amount of lanthanides from simulated HLW solution with pH 4 was achieved by using a newly purified Cyanex 301/SiO2-P resin. However, the Am(III) separation was very sensitive to the purity of Cyanex 301, and the improvement of its stability is an important task for practical utilization.