ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
J. T. Cole, R. E. Wood
Nuclear Technology | Volume 28 | Number 1 | January 1976 | Pages 9-22
Technical Paper | Fuels for Pulsed Reactor / Fuel | doi.org/10.13182/NT76-A31535
Articles are hosted by Taylor and Francis Online.
The Power Burst Facility (PBF) is designed to operate under steady-state conditions to 20 MW (this value may be upgraded to 30 to 40 MW in the near future), with self-limiting power bursts having initial asymptotic periods as short as 1.3 msec, and with shaped power bursts. The core and thus the fuel rods to accomplish these design requirements involved a significant development program to determine the performance capability. The limiting performance capability was determined to be the axial and diametral growth of the fuel rods. The growth behavior of the fuel rods resulted from burst tests conducted in the Transient Reactor Test Facility and Capsule Driver Core reactors. In these tests, the fuel rods were subjected to repeated bursts (10 to 200 bursts/rod) in which fuel temperatures ranged from 1600 to ∼2600°C. The minimum reactor period was 3.0 msec. The PBF fuel rods, which are 47.5 in. long and 0.75 in. in diameter, experienced maximum axial growth on the order of 0.75 in. and maximum diametral growth of ∼ 0.040 in. in these tests.