ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Candidates for leadership provide statements: ANS Board of Directors
With the annual ANS election right around the corner, American Nuclear Society members will be going to the polls to vote for a vice president/president-elect, treasurer, and members-at-large for the Board of Directors. In January, Nuclear News published statements from candidates for vice president/president-elect and treasurer. This month, we are featuring statements from each nominee for the Board of Directors.
W. G. Schuetzenduebel
Nuclear Technology | Volume 28 | Number 3 | March 1976 | Pages 315-327
Technical Paper | Reactor | doi.org/10.13182/NT76-A31514
Articles are hosted by Taylor and Francis Online.
Advances in steam generator design have been made in recent years. The demands of gas-cooled nuclear power plants mean high-temperature operating conditions and space limitations. The feasibility of the high-temperature gascooled reactor (HTGR) concept and the 235U-Th233U fuel cycle was demonstrated by 6 yr of operation of the 40-MW(e) Peach Bottom prototype HTGR power plant. Two steam generators located outside the pressure vessel were used to exchange the heat from the primary coolant (helium) to the secondary coolant (water). A prestressed concrete reactor vessel (PCRV) was used in the design of the 330-MW(e) Fort St. Vrain power demonstration plant. Use of the PCRV made the integration of all the nuclear steam supply system components practical. The primary coolant inventory was reduced and external piping and steam generator pressure shells were eliminated. A once-through-type steam generator system was selected. Materials selected for use in the pressure parts exceeded American Society of Mechanical Engineers Code requirements. The next step in the development of HTGR technology is the large commercial HTGR plant, which has once-through-type steam generators with a nominal capacity of 500 MW(th). Materials used in the main steam section range from 2¼ Cr—1 Mo to Ni-Fe-Cr (Alloy 800). High carbon levels were used to increase the creep strength of the materials. Gas cooling for fast breeder reactors is being studied by designing a 300-MW(e) demonstration plant. The steam generators are similar to the design of the Fort St. Vrain and large commercial plants. Tubes made of Alloy 800 are used.